STRONG RIGIDITY OF II1 FACTORS ARISING FROM MALLEABLE ACTIONS OF w-RIGID GROUPS, I

نویسنده

  • SORIN POPA
چکیده

We consider crossed product II1 factors M = N ⋊σ G, with G discrete ICC groups that contain infinite normal subgroups with the relative property (T) and σ trace preserving actions of G on finite von Neumann algebras N that are “malleable” and mixing. Examples are the actions of G by Bernoulli shifts (classical and non-classical), and by Bogoliubov shifts. We prove a rigidity result for isomorphisms of such factors, showing the uniqueness, up to unitary conjugacy, of the position of the group von Neumann algebra L(G) inside M . We use this result to calculate the fundamental group of M , F (M), in terms of the weights of the shift σ, for G = Z ⋊SL(2,Z) and other special arithmetic groups. We deduce that for any subgroup S ⊂ R∗+ there exist II1 factors M (separable if S is countable or S = R ∗ +) with F (M) = S. This brings new light to a long standing open problem of Murray

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STRONG RIGIDITY OF II1 FACTORS ARISING FROM MALLEABLE ACTIONS OF w-RIGID GROUPS, II

We prove that any isomorphism θ : M0 ≃ M of group measure space II1 factors, M0 = L∞(X0, μ0)⋊σ0 G0, M = L ∞(X,μ)⋊σ G, with G0 containing infinite normal subgroups with the relative property (T) of Kazhdan-Margulis (i.e. G0 w-rigid) and G an ICC group acting by Bernoulli shifts σ, essentially comes from an isomorphism of probability spaces which conjugates the actions with respect to some identi...

متن کامل

Strong Rigidity of Ii1 Factors Coming from Malleable Actions of Weakly Rigid Groups, I

We consider cross-product II1 factors M = N⋊σG, with G discrete ICC groups that contain infinite normal subgroups with the relative property (T) and σ : G → AutN trace preserving actions of G on finite von Neumann algebras N that are “malleable” and mixing. Examples are the weighted Bernoulli and Bogoliubov shifts. We prove a rigidity result, showing the uniqueness of the position of L(G) insid...

متن کامل

Deformation and rigidity for group actions and von Neumann algebras

We present some recent rigidity results for von Neumann algebras (II1 factors) and equivalence relations arising from measure preserving actions of groups on probability spaces which satisfy a combination of deformation and rigidity properties. This includes strong rigidity results for factors with calculation of their fundamental group and cocycle superrigidity for actions with applications to...

متن کامل

Applications of deformation rigidity theory in Von Neumann algebras

This work contains some structural results for von Neumann algebras arising from measure preserving actions by direct products of groups on probability spaces. The technology and the methods we use are a continuation of those used by Chifan and Sinclair in [Ionut Chifan and Thomas Sinclair. On the structural theory of II1 factors of negatively curved groups, ArXiv e-prints, March 2011]. By empl...

متن کامل

Construction of Type Ii1 Factors with Prescribed Countable Fundamental Group

In the context of Free Probability Theory, we study two different constructions that provide new examples of factors of type II1 with prescribed fundamental group. First we investigate state-preserving group actions on the almost periodic free Araki-Woods factors satisfying both a condition of mixing and a condition of free malleability in the sense of Popa. Typical examples are given by the fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004